MOTOROLA
MC68341 USER’S MANUAL
7- 3
7.1.1 Serial Communication Channels A and B
Each communication channel provides a full-duplex asynchronous/synchronous receiver
and transmitter using an operating frequency independently selected from a baud rate
generator or an external clock input.
The transmitter accepts parallel data from the IMB, converts it to a serial bit stream,
inserts the appropriate start, stop, and optional parity bits, then outputs a composite serial
data stream on the channel transmitter serial data output (TxDx). Refer to 7.3.2.1
Transmitter for additional information.
The receiver accepts serial data on the channel receiver serial data input (RxDx), converts
it to parallel format, checks for a start bit, stop bit, parity (if any), or break condition, and
transfers the assembled character onto the IMB during read operations. Refer to 7.3.2.2
Receiver for additional information.
7.1.2 Baud Rate Generator Logic
The crystal oscillator operates directly from a 3.6864-MHz crystal connected across the
X1 input and the X2 output or from an external clock of the same frequency connected to
X1. The clock serves as the basic timing reference for the baud rate generator and other
internal circuits.
The baud rate generator operates from the oscillator or external TTL clock input and is
capable of generating 19 commonly used data communication baud rates ranging from 50
to 76.8k by producing internal clock outputs at 16 times the actual baud rate. Refer to 7.2
Serial Module Signal Definitions and 7.3.1 Baud Rate Generator for additional
information.
The external clock input (SCLK), which bypasses the baud rate generator, provides a
synchronous clock mode of operation when used as a divide-by-1 clock and an
asynchronous clock mode when used as a divide-by-16 clock. The external clock input
allows the user to use SCLK as the only clock source for the serial module if multiple baud
rates are not required.
7.1.3 Internal Channel Control Logic
The serial module receives operation commands from the CPU32 and, in turn, issues
appropriate operation signals to the internal serial module control logic. This mechanism
allows the registers within the module to be accessed and various commands to be
performed. Refer to 7.4 Register Description and Programming for additional
information.
7.1.4 Interrupt Control Logic
Seven interrupt request (IRQ7–IRQ1) signals are provided to notify the CPU32 that an
interrupt has occurred. These interrupts are described in 7.4 Register Description and
Programming. The interrupt status register (ISR) is read by the CPU32 to determine all
F
re
e
sc
a
le
S
e
m
ic
o
n
d
u
c
to
r,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
n
c
..
.