![](http://datasheet.mmic.net.cn/170000/S71PL191HB0BFI100_datasheet_9723326/S71PL191HB0BFI100_73.png)
May 7, 2004 S29PL127H_129H_00A1
S29PL127H/S29PL129H
57
Pre l i m i n a r y
WRITE OPERATION STATUS
The device provides several bits to determine the status of a program or erase
operation: DQ2, DQ3, DQ5, DQ6, and DQ7.
Table 18 and the following subsec-
tions describe the function of these bits. DQ7 and DQ6 each offer a method for
determining whether a program or erase operation is complete or in progress.
The device also provides a hardware-based output signal, RY/BY#, to determine
whether an Embedded Program or Erase operation is in progress or has been
completed.
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded
Program or Erase algorithm is in progress or completed, or whether a bank is in
Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse
in the command sequence.
During the Embedded Program algorithm, the device outputs on DQ7 the com-
plement of the datum programmed to DQ7. This DQ7 status also applies to
programming during Erase Suspend. When the Embedded Program algorithm is
complete, the device outputs the datum programmed to DQ7. The system must
provide the program address to read valid status information on DQ7. If a pro-
gram address falls within a protected sector, Data# Polling on DQ7 is active for
approximately 1 s, then that bank returns to the read mode.
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.
When the Embedded Erase algorithm is complete, or if the bank enters the Erase
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide
an address within any of the sectors selected for erasure to read valid status in-
formation on DQ7.
After an erase command sequence is written, if all sectors selected for erasing
are protected, Data# Polling on DQ7 is active for approximately 400 s, then the
bank returns to the read mode. If not all selected sectors are protected, the Em-
bedded Erase algorithm erases the unprotected sectors, and ignores the selected
sectors that are protected. However, if the system reads DQ7 at an address within
a protected sector, the status may not be valid.
When the system detects DQ7 has changed from the complement to true data,
it can read valid data at DQ15–DQ0 on the following read cycles. Just prior to the
completion of an Embedded Program or Erase operation, DQ7 may change asyn-
chronously with DQ15–DQ0 while Output Enable (OE#) is asserted low. That is,
the device may change from providing status information to valid data on DQ7.
Depending on when the system samples the DQ7 output, it may read the status
or valid data. Even if the device has completed the program or erase operation
and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid
data on DQ15–DQ0 will appear on successive read cycles.
Polling timing diagram.