參數(shù)資料
型號(hào): 82C836B
廠商: Electronic Theatre Controls, Inc.
英文描述: Single-Chip 386sx AT
中文描述: 單芯片386sx在
文件頁(yè)數(shù): 144/205頁(yè)
文件大?。?/td> 3878K
代理商: 82C836B
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)當(dāng)前第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)
Local DRAM Bank Switch (SRA Mode)
Figure 11-7 shows CPU accesses to local DRAM in zero wait state mode with -RAS
initially high. These timing relationships apply when the DRAM bank needs to be
accessed is different from the bank for which -RAS was already active. Since -RAS for
the desired bank was already high, no further -RAS precharge time is required for the
desired bank. The basic protocol is the same as for CAS-only cycles, except as follows:
-RAS for the target bank goes active at the middle of TS, and -RAS for the previously
active bank simultaneously goes inactive.
Row address is valid for one PROCCLK before and after -RAS goes active.
If encoded RAS is being used, -RAS3 goes inactive at the middle of TS; one PROCCLK
later, RAS0-2 change to the new value; after one more PROCCLK, -RAS3 again goes
active. The net penalty for encoded RAS is one T-state (only for bank switch cycles).
These diagrams also apply if no -RAS was previously active. This can happen during the
first local memory access following a refresh or DMA cycle, or following a RAS timeout.
The minimum bank switch cycle for nonencoded RAS consists of T1P, T2P, T2P (three
T-states). For encoded RAS, an extra T2P is needed. For nonpipelined operation, an
extra T1 occurs at the beginning of the cycle. As with CAS-only cycles, a CAS Extend
wait state can also be enabled. An early wait state can also be enabled for EMS or
external cache support. Minimum -CAS active time is two PROCCLK cycles for write,
or three PROCCLK cycles for read.
The minimum time allowed for read data access from -RAS active is five PROCCLK
cycles.
Local DRAM RAS High Cycle (MRA Mode)
In MRA mode, bank-switch timing differs from SRA mode as follows:
RAS for the new bank frequently is already low, and the row address previously latched
by the DRAMs is already valid. In that case, bank switch timing is exactly the same as
page hit timing shown in Figure 11-6. The fastest possible bank-switch read in MRA
mode is two T-states, while the fastest possible bank-switch write in MRA mode is three
T-states (CPU running in pipeline mode).
If RAS for the new bank is not already low, then the cycle follows the nonencoded RAS
timing shown in Figure 11-7, except that RAS for the previously accessed bank remains
low instead of going high at mid-TS.
MRA mode, therefore, saves one T-state over SRA mode for bank-switch (page-hit)
DRAM reads. Since the majority of DRAM accesses will be reads (mostly code fetches),
and will be DRAM page-hits, the total reduction in T-states can be substantial. This the
key performance advantage of MRA mode over SRA.
I
CPU Access to AT-Bus
System Timing Relationships
11-12
Revision 3.0
P R E L I M I N A R Y
Chips and Technologies, Inc.
相關(guān)PDF資料
PDF描述
82C862 FireLink USB Dual Controller Quad Port USB
82C931 Plug and Play Integrated Audio Controller
82S09 576-BIT BIPOLAR RAM (64 X 9)
82S19 576-BIT BIPOLAR RAM (64 X 9)
82S101BYA 2.6GHz Relay, 1 Form C, 0.5A 30VDC Relay, 50ohms, SMD
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
82C83H 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:CMOS Octal Latching Inverting Bus Driver
82C84 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:CMOS Clock Generator Driver
82C84A 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:CMOS Clock Generator Driver
82C84A/B 制造商: 功能描述: 制造商:undefined 功能描述:
82C84A_05 制造商:INTERSIL 制造商全稱:Intersil Corporation 功能描述:CMOS Clock Generator Driver