參數(shù)資料
型號(hào): P8XC591
廠商: NXP Semiconductors N.V.
英文描述: HiRel FPGA, Low-Power 1.0?? CMOS Technology
中文描述: 單芯片8 - CAN控制器位微控制器
文件頁(yè)數(shù): 144/160頁(yè)
文件大小: 601K
代理商: P8XC591
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)當(dāng)前第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)
2000 Jul 26
144
Philips Semiconductors
Preliminary Specification
Single-chip 8-bit microcontroller with CAN controller
P8xC591
Notes to the DC characteristics
1.
8-bit mode
2.
See Figures 62 through 64 for I
DD
test conditions.
3.
The operating supply current is measured with all output pins disconnected; XTAL1 driven with
t
r
= t
f
= 10 ns; V
IL
= V
SS
+ 0.5 V; V
IH
= V
DD
0.5 V; XTAL2 not connected; EA = Port 0 = V
DD
; = RST = V
SS
.
4.
The Idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t
r
= t
f
= 10 ns;
V
IL
= V
SS
+ 0.5 V; V
IH
= V
DD
0.5 V; XTAL2 not connected; Port 0 = RST = V
DD
; EA = V
SS
.
5.
The Power-down current is measured with all output pins disconnected; XTAL2 not connected;
RST = Port 0 = V
DD
; EA = XTAL1 = V
SS
.
6.
The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I
2
C specification, so an input voltage below 1.5 V will
be recognized as a logic 0 while an input voltage above 3.0 V will be recognized as a logic 1.
7.
Pins of Port 1 (except P1.6, P1.7), 2 and 3 source a transition current when they are being externally driven from
HIGH to LOW. The transition current reaches its maximum value when V
IN
is approximately 2 V.
8.
Capacitive loading on Ports 0 and 2 may cause spurious noise to be superimposed on the V
OL
of ALE and
Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these
pins make HIGH-to-LOW transitions during bus operations. In the worst cases (capacitive loading > 100pF), the
noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify ALE with a Schmitt
Trigger, or use an address latch with a Schmitt Trigger STROBE input. I
OL
can exceed these conditions provided that
no single outputs sinks more than 5 mA and no more than two outputs exceed in the test conditions.
9.
Capacitive loading on Ports 0 and 2 may cause the V
OH
on ALE and PSEN to momentarily fall below the 0.9 V
DD
specification when the address bits are stabilizing.
10. Conditions: AV
SS
= 0 V; V
DD
= 5.0 V. Measurement by continuous conversion of AV
IN
=
20 mV to 5.12 V in steps
of 0.5 mV, derivating parameters from collected conversion results of ADC. AV
REF+
(P8xC591) = 4.977 V, ADC is
monotonic with not missing codes.
11. The differential non-linearity (D
Le
) is the difference between the actual step width and the ideal step width (see
Fig.54).
12. The ADC is monotonic; there are no missing codes.
13. The integral non-linearity (I
Le
) is the peak difference between the centre of the steps of the actual and the ideal
transfer curve after appropriate adjustment of gain and offset error (see Fig.54).
14. The offset error (OS
e
) is the absolute difference between the straight line which fits the actual transfer curve (after
removing gain error), and a straight line which fits the ideal transfer curve (see Fig.54).
15. The gain error (G
e
) is the relative difference in percent between the straight line fitting the actual transfer curve (after
removing offset error), and the straight line which fits the ideal transfer curve. Gain error is constant at every point
on the transfer curve (see Fig.54).
16. The absolute voltage error (A
e
) is the maximum difference between the centre of the steps of the actual transfer curve
of the non-calibrated ADC and the ideal transfer curve.
17. This should be considered when both analog and digital signals are simultaneously input to Port 1.
18. The parameter is guaranteed by design and characterized, but is not production tested.
相關(guān)PDF資料
PDF描述
P90CE201 16-bit microcontroller
P90CE201AEB 16-bit microcontroller
P9217 PbS photoconductive detector
P930 CdS photoconductive cell
PA025XSB This technical specification applies to 2.5inch color TFT-LCD panel.
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
P8XC592 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:8-bit microcontroller with on-chip CAN
P8XCE598 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:8-bit microcontroller with on-chip CAN
P8XCL580HFH 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Low voltage 8-bit microcontrollers with UART, I2C-bus and ADC
P8XCL580HFT 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Low voltage 8-bit microcontrollers with UART, I2C-bus and ADC
P8Z77 DELUXE 制造商:Asus 功能描述:P8Z77-V Deluxe ATX Motherboard