9
General Description
The nLiten BBT3821 is a fully integrated octal 2.488Gbps to
3.1875Gbps Clock and Data Recovery (CDR) circuit and
Retimer ideal for high bandwidth serial electrical or optical
communications systems. It extracts timing information and
data from serial inputs at 2.488Gbps to 3.1875Gbps,
covering 10 Gigabit Fiber Channel (10GFC) and IEEE 802.3
specified 10 Gigabit Ethernet eXtended Attachment Unit
Interface (XAUI) rates.
Each BBT3821 accepts two sets of four high-speed
differential serial signals, re-times them with a local
Reference Clock, reduces jitter, and delivers eight clean
high-speed signals. The BBT3821 provides a full-function
XAUI-to-10GBASE-CX4 PMA/PMD (compatible with the
IEEE 802.3ak specification), and also can be configured to
provide the electrical portion of a XAUI-to-10GBASE-LX4
PMA/PMD, needing only laser drivers and photo detectors to
be added. In both these applications, the XAUI side can be
configured to implement the XENPAK MSA_R3.0
specification, including full NVR and DOM support. The
XPAK and X2 specifications currently all reference the
XENPAK specification, and are supported in exactly the
same manner. The BBT3821 can also be used to enhance a
single full-duplex 10 Gigabit XAUI link, extending the driving
distance of the high-speed (2.488Gbps to 3.1875Gbps)
differential traces to 40 inches of FR4 PCB (assuming a
proper impedance-controlled layout).
Each lane can operate independently with a data transfer
rate of within ±100ppm of either 20x or 10x the local
Reference Clock. The reference clock should be 156.25MHz
for 10 Gigabit Ethernet XAUI applications, and 159.375MHz
for 10 Gigabit Fiber Channel. Other reference frequencies
can be used for proprietary rates. For other applications,
each of the 8 lanes can be operated independently, within
the same data rate and clock restrictions.
The nLiten BBT3821 contains eight clock & data recovery
units, 8B/10B decoders and encoders, and elastic buffers
which provide the user with a simple interface for transferring
data serially and recovering it on the receive side. When
recovering an 8B/10B stream, a receive FIFO aligns all
incoming serial data to the local reference clock domain,
adding or removing IDLE sequences as required. This
simplifies implementation of an upstream ASIC by removing
the requirement to deal with multiple clock domains. The
Retimer can also be configured to operate as eight non-
encoded 10-bit Retimers. Allowing long strings of
consecutive 1’s or 0’s (up to 512 bits), the nLiten BBT3821
has the capacity to accommodate proprietary encoded data
links at any data rate between 2.488Gbps and 3.1875Gbps
(and for half rate operation from 1.244Gbps to
1.59375Gbps).
The device configuration can be done through the use of the
two line Management Data Input/Output (MDIO) Interface
specified in IEEE 802.3 Clause 45. The BBT3821 supports a
5-bit Port Address, and DEVice ADdresses (DEVAD) 1, 3 & 4.
The initial values of the registers default to values controlled,
where appropriate, by external configuration pins, and set to
optimize the initial configuration for XAUI, CX4, and
XENPAK/XPAK/X2 use. Optionally, the BBT3821
configuration can be loaded at power-on or reset from the
NVR EEPROM or DOM used for the XENPAK/XPAK/X2
registers.
A full suite of loopback configurations is provided, including
the (802.3ae required) XAUI-transmit to XAUI-receive
loopback, and also the (802.3ae optional) PHY XGXS
loopback (effectively CX4/LX4-receive to CX4/LX4 transmit).
Lane-by-lane diagnostic loopback is available through
vendor-specific MDIO registers.
The low-power version BBT3821LP-JH is selected for
operation as an LX4 device at lowered supply voltages.
Functions
The nLiten BBT3821 serves three main functions:
Pre-emphasize the output and equalize the input in order
to “re-open” the data eye, thus allowing CX4 operation,
and also increasing the available driving distance of the
high-speed traces in XAUI links.
Clock compensation by insertion and deletion of IDLE
characters when 8B/10B encoding and decoding is
enabled.
Automatic Byte and Lane Alignment, using both disparities
of /K/ for Byte alignment and either ||A|| or IDLE to DATA
transitions for lane alignment.
Receiver Operations
Loss of Signal Detection, Termination &
Equalization
Each receiver lane detects and recovers the serial clock
from the received data stream. An equalizer has been added
to each receiver input buffer, which boosts high frequency
edge response. The boost factor can be selected from 16
values (none to full) through the MDIO Registers, (see
A nominally 100
on-chip transmission line terminating
resistor is integrated with the input equalizer. This eliminates
the requirement of external termination resistors. It greatly
improves the effectiveness of the termination, providing the
best signal integrity possible.
There are also signal detect functions on each input lane,
whose “Loss Of Signal” (LOS) and “Signal Detect”
(SIG_DET) outputs appear in the MDIO Vendor-Specific
registers at address 1.C00A’h
(Table 44) and 4.C00A’h
(Table 90). The LOS indication reflects the standard XAUI
specification, while the SIG_DET indication (CX4 inputs
only) implements the CX4 function. These signals can also
BBT3821